skip to main content


Search for: All records

Creators/Authors contains: "Caffee, Marc"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Constraining the timing and rate of Laurentide Ice Sheet (LIS) retreat through the northeastern United States is important for understanding the co-evolution of complex climatic and glaciologic events that characterized the end of the Pleistocene epoch. However, no in situ cosmogenic 10Be exposure age estimates for LIS retreat exist through large parts of Connecticut or Massachusetts. Due to the large disagreement between radiocarbon and 10Be ages constraining LIS retreat at the maximum southern margin and the paucity of data in central New England, the timing of LIS retreat through this region is uncertain. Here, we date LIS retreat through south-central New England using 14 new in situ cosmogenic 10Be exposure ages measured in samples collected from bedrock and boulders. Our results suggest ice retreated entirely from Connecticut by 18.3 ± 0.3 ka (n = 3). In Massachusetts, exposure ages from similar latitudes suggest ice may have occupied the Hudson River Valley up to 2 kyr longer (15.2 ± 0.3 ka, average, n = 2) than the Connecticut River Valley (17.4 ± 1.0 ka, average, n = 5). We use these new ages to provide insight about LIS retreat timing during the early deglacial period and to explore the mismatch between radiocarbon and cosmogenic deglacial age chronologies in this region.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  2. A sequential chemical extraction procedure was developed and tested to investigate the utility of meteoric 10Be as a tracer for authigenic mineral formation beneath the East Antarctic Ice Sheet. Subglacial meltwater is widely available under the Antarctic Ice Sheet and dissolved gases within it have the potential to drive chemical weathering processes in the subglacial environment. Meteoric 10Be is a cosmogenic nuclide with a half-life of 1.39⋅10^6 years that is incorporated into glacier ice, therefore its abundance in the subglacial environment in Antarctica is meltwater dependent. It is known to adsorb to fine-grained particles in aqueous solution, precipitate with amorphous oxides/hydroxides, and/or be incorporated into authigenic clay minerals during chemical weathering. The presence of 10Be in chemical weathering products derived from beneath the ice therefore indicates chemical weathering processes in the subglacial environment. Freshly emerging subglacial sediments from the Mt. Achernar blue ice moraine were subject to chemical extractions where these weathering phases were isolated and 10Be concentrations therein quantified. Optimization of the phase isolation was developed by examining the effects of each extraction on the sample mineralogy and chemical composition. Experiments on 10Be desorption revealed that pH 3.2–3.5 was optimal for the extraction of adsorbed 10Be. Vigorous disaggregation of the samples before grain size separations and acid extractions is crucial due to the incorporation of the nuclide in clay minerals and its preferential absorption to clay-sized particles. 10Be concentrations of 2–22⋅10^7 atoms⋅g^ -1 measured in oxides and clay minerals in freshly emerging sediments strongly indicate subglacial chemical weathering in the catchment of the Mt. Achernar moraine. Based on total 10Be sample concentrations, local basal melt rates, and 10Be ice concentrations, sediment-meltwater contact in the subglacial environment is on the order of thousands of years per gram of underlying fine sediment. Strong correlation (R = 0.97) between 10Be and smectite abundance in the sediments supports authigenic clay formation in the subglacial environment. This suggests meteoric 10Be is a useful tool to characterize subglacial geochemical weathering processes under the Antarctic Ice Sheet. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  3. While there are no ice sheets in the Northern Hemisphere outside of Greenland today, it is uncertain whether this was also the case during most other Quaternary interglacials. We show, using in situ cosmogenic nuclides in ice-rafted debris, that the Laurentide Ice Sheet was likely more persistent during Quaternary interglacials than often thought. Low 26Al/10Be ratios (indicative of burial of the source area) in marine core sediment suggest sediment source areas experienced only brief (on the order of thousands of years) and/or infrequent ice-free interglacials over the past million years. These results imply that complete Lauren- tide deglaciation may have only occurred when climate forcings reached levels comparable to those of the early Holocene, making our current interglacial unusual relative to others of the mid-to-late Pleistocene. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  4. Abstract While there are no ice sheets in the Northern Hemisphere outside of Greenland today, it is uncertain whether this was also the case during most other Quaternary interglacials. We show, using in situ cosmogenic nuclides in ice-rafted debris, that the Laurentide Ice Sheet was likely more persistent during Quaternary interglacials than often thought. Low 26Al/10Be ratios (indicative of burial of the source area) in marine core sediment suggest sediment source areas experienced only brief (on the order of thousands of years) and/or infrequent ice-free interglacials over the past million years. These results imply that complete Laurentide deglaciation may have only occurred when climate forcings reached levels comparable to those of the early Holocene, making our current interglacial unusual relative to others of the mid-to-late Pleistocene. 
    more » « less
  5. Abstract. The timing of the Laurentide Ice Sheet's final retreat from North America's Laurentian Great Lakes is relevant to understanding regional meltwater routing, changing proglacial lake levels, and lake-bottom stratigraphy following the Last Glacial Maximum. Recessional moraines on Isle Royale, the largest island in Lake Superior, have been mapped but not directly dated. Here, we use the mean of 10 new 10Be exposure ages of glacial erratics from two recessional moraines (10.1 ± 1.1 ka, one standard deviation; excluding one anomalously young sample) to constrain the timing of Isle Royale's final deglaciation. This 10Be age is consistent with existing minimum-limiting 14C ages of basal organic sediment from two inland lakes on Isle Royale, a sediment core in Lake Superior southwest of the island, and an estimated deglaciation age of the younger of two subaqueous moraines between Isle Royale and Michigan's Keweenaw Peninsula. Relationships between Isle Royale's landform ages and Lake Superior bottom stratigraphy allow us to delineate the retreat of the Laurentide ice margin across and through Lake Superior in the early Holocene. We suggest that Laurentide ice was in contact with the southern shorelines of Lake Superior later than previously thought.

     
    more » « less
  6. Accurate reconstruction of Laurentide Ice Sheet volume changes following the Last Glacial Maximum is critical for understanding ice sheet contribution to sea-level rise, the resulting influence of meltwater on oceanic circulation, and the spatial and temporal patterns of deglaciation. Here, we provide empirical constraints on Laurentide Ice Sheet thinning during the last deglaciation by measuring in situ cosmogenic 10Be in 81 samples collected along vertical transects of nine mountains in the northeastern United States. In conjunction with 107 exposure age samples over five vertical transects from previous studies, we reconstruct ice sheet thinning history. At peripheral sites (within 200 km of the terminal moraine), we find evidence for ∼600 m of thinning between 19.5 ka and 17.5 ka, which is coincident with the slow initial margin retreat indicated by varve records. At locations >400 km north of the terminal moraine, exposure ages above and below 1200 m a.s.l. exhibit different patterns. Ages above this elevation are variable and older, while lower elevation ages are indistinguishable over 800−1000 m elevation ranges, a pattern that suggests a subglacial thermal boundary at ∼1200 m a.s.l. separating erosive, warm-based ice below and polythermal, minimally erosive ice above. Low-elevation ages from up-ice mountains are between 15 ka and 13 ka, which suggests rapid thinning of ∼1000 m coincident with Bølling-Allerød warming. These rates of rapid paleo-ice thinning are comparable to those of other vertical exposure age transects around the world and may have been faster than modern basin-wide thinning rates in Antarctica and Greenland, which suggests that the southeastern Laurentide Ice Sheet was highly sensitive to a warming climate. 
    more » « less
  7. Past interglacial climates with smaller ice sheets offer analogs for ice sheet response to future warming and contributions to sea level rise; however, well-dated geologic records from formerly ice-free areas are rare. Here we report that subglacial sediment from the Camp Century ice core preserves direct evidence that northwestern Greenland was ice free during the Marine Isotope Stage (MIS) 11 interglacial. Luminescence dating shows that sediment just beneath the ice sheet was deposited by flowing water in an ice-free environment 416 ± 38 thousand years ago. Provenance analyses and cosmogenic nuclide data and calculations suggest the sediment was reworked from local materials and exposed at the surface <16 thousand years before deposition. Ice sheet modeling indicates that ice-free conditions at Camp Century require at least 1.4 meters of sea level equivalent contribution from the Greenland Ice Sheet.

     
    more » « less
    Free, publicly-accessible full text available July 21, 2024
  8. Abstract

    The impact of late Cenozoic climate on the East Antarctic Ice Sheet is uncertain. Poorly constrained patterns of relative ice thinning and thickening impair the reconstruction of past ice-sheet dynamics and global sea-level budgets. Here we quantify long-term ice cover of mountains protruding the ice-sheet surface in western Dronning Maud Land, using cosmogenic Chlorine-36, Aluminium-26, Beryllium-10, and Neon-21 from bedrock in an inverse modeling approach. We find that near-coastal sites experienced ice burial up to 75–97% of time since 1 Ma, while interior sites only experienced brief periods of ice burial, generally <20% of time since 1 Ma. Based on these results, we suggest that the escarpment in Dronning Maud Land acts as a hinge-zone, where ice-dynamic changes driven by grounding-line migration are attenuated inland from the coastal portions of the East Antarctic Ice Sheet, and where precipitation-controlled ice-thickness variations on the polar plateau taper off towards the coast.

     
    more » « less